]9" R U. of lowa 74-5

& U1 m
oy =
. =
N AW
on e
[+ I |
= )
[
|
B
e L
& Oh
oo
v
U =
H S
wn
—~
b
O
= k4
o0
<l td
o
- b
< R
LI o
-
=3
4]
ﬁ\ $ 5
0 2
ke
[4;] o
[pl="K=]
NN
x|
Y =+
[\8)
P
(1]
Reproduction in whole or in part is permitted for any purpose of the United States government. X
~
Research wes sponsored in part by the Office of Naval Research under contract NOGO14-68-2-0196-0003. ®
w o =
- ~J
Reproducad by =L T
NATIONAL TECHNICAL 25 :
- -
INFORMATION  SERVICE “@ 3
Da.pan_monr of Commerce =
Springfield, VA, 22151 -
o

Department of Physics and Astronomy

THE UNIVERSITY OF IOWA

Iowa City, lowa 52242




U. of Iowa Th-5

*
BASTIC ELEMENTS OF POWER SPECTRAL ANALYSIS
by

Davis D. Sentman

Department of Physics and Astronomy
The University of Iowa
Towa City, Iowa 52242

January 1O7h4

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

Regearch was sponsored in part by the Office of Naval Research under
contract NOOOLL-68-4-0196-0003 and by the National Aeronautics and
Space Administration under grant NGL-16~001-002,

*This research report supersedes U. of Tows 73-2k,

4

<



UNCLASSIFIED

SECURITY CLASMFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPSRT nURBER B OVT ACCESSION HOJ 3. RECIPIENT'S CATALOG NUMBER

U. of TIowa Th-5

4. TITLE (and Sublitle)

B. TYPE OF REFOAT & PERIOD COVERED

BASIC ELEMENTS OF POWER SPECTRAL ANALYSIS Progress January 1974

8. PERFORMING ORG. AEPORT NUMSER

T. AUTHOR(S) 5 CONTRACT OR GRAN] HUMBER(®) .
Davis D. Sentman NOOOLY4-68-A-01.96-0003

%, PERFORMING ORGANITATION NAME AND ADDRESS 10, ::‘.’2".‘#0 ‘u{'x"ﬂﬂ'-rr'u'ﬁ'ﬁ"-’fﬁ' TAMK

Department of Physics and Astronomy
The University of Iowa
Towa City, Iowa 52242

1t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research T liiﬁ‘:a;rf‘ :-‘9]1*
Arlington, Virginia 22217 56
TU RONITORING AGENCY NAME 8 ADDRESS(/ ditlerent Trom Controfiing Offica) | 'F. SECURITY CLASS, (of this riwort)
UNCLASSIFIED

T%a, DECLASHPICATION/ DOWNGNADING
SCHEDULE

T4, DISTRIBUTION BTATEMENT (of this Repori)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abatraci enteved in Black 30, If differant lrom Report)

19. SUPPLEMENTARY HOTES

19. KEY WORDS (Continue on reverss side If necessary and identily by Block number)

Power spectrum
Frequency window
Statistical reliability

20. ABSTRACT (Continus an raverss slde I necssemy and identify by block numbet)

A short presentation is made on the basic elements of Power
Spectral asnalysis with emphasis on the Bleckman-Tukey method. Short
discussions are included on the topies of pre-whitening, frequency and
spectral windows, and statistical reliebility. Ixamples are included
whenever possible, and a Fortran subroutine for calculating a power

spectrum is presented. .
A~ o

DD , %™, 1473 =oimon oF 1 NOV 8813 OBsSOLETE i UNCLA 1E
N /N 0103-014- 6801 | CLASSIFIED I
SECURITY CLASHIFICATION OF THIS PAGK (Whew Data Entersd)




FREFACE

This report is intended to be a brief summary of the most
basic elements of the subject of Power Spectral Analysis of time-
geries data. These elements are presented and discussed heuristically
without rigorous mathematical justification. It is hoped that the .
material may be used as a practical reference for those gaining their
first exposure to the subject, although key references are given for
further research into specific points. Any errors of omission most
likely reflect the author's limited exposure to the field through

his application of the method to a few particular research problems.



ABSTRACT

A short presentation is made on the basic elements of Power
Spectral Analysis with emphasis on the Blaékman-Tukey method. Short
discussions sre included on the topics of pre-whitening, frequency
and spectral windows, and statistical reliability. Fxamples are
included whenever possible, and a Fortran subroutine for calculating

a power spectrum is presented.
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I. BRIEF BACKGROUND

A. Historical Roots

Power spectral analysis is one small area of the much broader
field of Commmunications Theory. This broader field is an indispens-
able part of communications engineering snd provides the theoretical
foundations for the design and analysis of much of the advanced engi-
neering found in modern communications systems (Lee, 1950). The
theory 1s basgically a statistical theory in which the central idea is
that noise and messeages are considered to be random phenomens. Prob-
ability theory is therefore incorporated into the very foundation of
the theory and is an integral part of it.

The basis of the theory finds its roots in statistical mechanics.
" The equivelence of time and ensemble averages, first assumed by Gibbs

and later stated more precisely by Maxwell in his ergodic hypothesgis,

i1z the starting point for statistical commmicationg theory. From
this and the quasi-ergodic hypothesis are derived the formal proofé

necessary for the logical development of the subject.

B. Ergodicity and Stationarity

Two conditions necessary for the development of the theory ;re
imposed on the random ensembles of data which we wish to power spec-
trum analyze. We shall merely state them as being the foundation for
the development of the theory, with proofs and implications to be

found elsewhere.
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(1) Ergodicity. The ergodic theorem may be stated as "in a
stationary ensemble of random functions having a continuous range of
possible wvalues the amflitudes of an ensemble member will come infiﬁ-

“itely close to every point of the continuous range of possible values
if given an infinite amount of time." This theorem allows the replace-
ment of ensemble averages with time averages, and is the basis for the
formal analysis of commmnications theory.

(2) Stationarity. If the amplitude probability density of ean

engsemble is time independent, the ensemble is said to be stationary.
In practical terms related to power spectral analysis this means that
the power spectrum of a finite data set is time independent.

In addition to the two sbove conditions, 1t is assumed that
the random process is Gaussian or nearly Gaussian in character, that
is, the probability distribution of the elements in an ensemble is
Gaussian or nearly so. Blackman and Tukey (1958) show that for an
infinite data set a Gaussian assumption yields exact results, and

rather good approximations otherwise,

C. Notation

With these preliminasries stated, we now give the notation to
be used throughout the rest of this section. Fourier transforms,
correlations (auto- and cross-), and convolutions are used rather
frequently in power spectrum work. Therefore to reduce the complexity
of the equations in the following discussion a simplified notation

will be adopted as follows:



1. Fourier Transform

Let f{t) be specified on the interval {-w, «). Then define

the Fourier transform

o

L% p(e) o1 gg
-~

Flw) =
Jom

o

We shall also use the Fourier transform operator ¥, e.g.,

Fe(t)] = Flw)

and inverse Fourier transform operator

FIe(e)] = 2= [® £(s) 1% at
Jom T

2. Correlation Functions

Let fi(t) and fg(t) be specified on the interval (-, «).

then use the following notation:

a. Convolution. Define

1 1/2
Lin TI-T//E £(t) £,(7 - ) at

W

i1(7)

i

£, (8) % 2,(8)

We



where ¥ denotes convolution.

b. Cross Correlation. Define

]

lim%jT/E £.(t) £t + 7) at

@ (1)
12 Tw T 9-T/2

iU}

£, (8) % £,(-t)

¢. Autocorrelation. Cross correlation of a function with

itgelf. Define

= 1im & ['T/2 ' ]
1 (7) %ﬂT J1/2 £ (t) £ (b + 1) at

£, (8) * £ (1)

1

£ (8) % £,(8)

the last step being a result of the symmetry of the autocorrelstion
operation.

In general, then, small letters will dencbte functions of time
and capital letters Fourier transforms {functions of frequency) of
the corresponding functions of time. Letters written in script will

be used to denote coperators. Additionally, MLP will be used as an



abbreviation for mean-lagged-product, and FFT for fast-Fourier-
transform. The term "power-spectral-density" (PSD) will also be

used synonymously with "power spectrum".



ITI. THE POWER SFECTRUM FOR THE CONTINUQUS CASE

A Tourier series is one set of orthogonal functions that may
be used to expand a well-behaved function on the interval (-«, =),
If we consider a time series f(t), we can represent it by

£(t) = FF(w)]

where

F(w)

Fr(t))

The power spectrum of a function i1s defined as the absolute value
squared of the Fourier transform of the function. If P{w) is the

power spectrum, then

Plo) = |F[£(t)1)% = [F(0)]®

But because of the convolution theorem, which states that for two
functions fl and fg,

F * = .
[fl f2] Fl F2
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By setting fl = f2 we have

e, *£]=F - F . (2)

*
Now fl fl

tion function is always an even function, i.e.,

is the autocorrelation function for fl. The auntocorrela-

£ (&) * £,(-t) = £ (8) * £, (t)

so that there are no sine components in its Fourier transform. The

transform is therefore real and

* —
3[1‘1 £] ?[cpll] = &,

2 (3)

i
=
=

I

7

g0 that

P(w) = |F(w){® . (1)



Therefore
Plw) = &{w) = 3[?011(‘0)] (5)
@)1 = a ) (6)

This equality is known as the Wiener Theorem and states that

the power spectrum of a time series is equal to

(a) the Fourier transform squared of the function, or

(b) thé Fourier transform of the autocorrelation function.

Tt may be noted that in (a) the Foprier transform utilizes both
sine and cosine terms, while in (b) the Fourier transform of the

autocorrelation function has only non-zero cogine terms, that is,

2, (w) = Flo, (41

= _fl: JF_Z cpll(t) cos wt dt
e

o o
- = Io (pll(t) cos whb dt . (7)

TR



The first method of computing the power spectrum is the most
direct and straightforward way. The fast-Fourier-transform (FFT)
calcul_ation utilizes the definition of the power gpectrum directly
to compute the power spectrum. The second method is known as the
mean-lagged-product (MLP) method, and is the one utilized by Blackman

and Tukey (1958) to calculate power spectra.
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III. FINITE DATA SETS

A. Effect of Data Truncation on the Power Spectrum

The definition of the power spectrum was made for infinitely
long, continuous data sets. Practical data analysis, however, re-.
quires the use of considerably less data. To determine the effects
on the power spectrum resulting from the truncation of a data set
to finite lengths, consider the function f(t) defined on the inter-

val (-w, =) as shown in Figure 1.

£(t)

-

Figure 1

If we truncate £{t) by multiplying by a data window g(t) such that

1, [t] s1/2
g(t) = { ,
o, [t|=>1/2

the truncated data set becomes

ht) = £(t) g(t)
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as shown in Figure 2.

h(t) = £(t) g(t)

-T/2 T/2

Figure 2

The function h(t) then represents the truncated data set avallable
from which the power spectrum is to be caleculated. The power spectrum
Pap(w) of h(t}, representing the apparent power spectrum of £(t), is

then

Pap(m) = |%(f - g)|2
- Irxcl®
= IFIQ * |GJ2 ’ (8)

the last step resulting from the fact that g is presumed to be an

even function. Thus the true power spectrum
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is modified by convolution with ]Glg, the Fourier transform squared

of the date window. G is called the frequency window by Blackman and

Tukey (1958). TFor the data set shown in Figure A-2, G is the sinc

function, shown in Figure 3.

L}
. sin x
gine (x) = ~
2N PN X
"
v \/ ~__r

Figure 3

Convolution by the freguency windcw causes a certain degree of
smoothing in the calculated power spectrum and a small amount of
leakage via the side lobes from nearby frequency bands into the fre-
quency band of interest, If the computed power spectrum is relatively
flat, i.e., has a dynamic range of less than 2 or 3 orders of magni-
tude, this smearing or leakage causes little or no problem, for the
amplitude of the largest (first) side lobe of the sinec function is
only on the order of several percent of that of the main lobe. If,
however, there are large, well-defined peaks in the power spectrum
such large peaks act as a first approximation delta funetion. When
convolved with the frequency window they act to reproduce the win-
dow, preoducing spurious peaks in the power spectrum corresponding to
the side lobes of the fregquency window. These spurious peaks may

be mistakenly identified as structural details of the true power

L
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spectrum when in reality they are merely artifacts created by trunca-

tion of the original data set.

B. Reducing Freguency Window Leakage

Because of the freguency window side lobe leakage associated
with data function truncation, one is properly concerned with means
of reducing or minimizing the undesirable effects of such truncation.
Several methods are available for doing this, each depending somewhat
on the pérticulars of how the power spectrum is computed. Three
commonly used methods will be described in the following sections,
each being intended to illustrate the basic features of and rationale

behind each procedure.

1. Data Tapering
One of the cbvious methods of reducing the side lobe leskage
is to choose the data window g(t) such that its Fourier transform
G(w) has either no side lobes at all or side lobes that are small

compared to the main lobe. Examples of the former are:

-(Jt1/2¢,)°

g(t) = e (Gaussian)

where to is some scale factor. This function has a Fourier transform

equal to a Gaussian; and

) sin 2m Af £ . .
g(t) = ~onmAF t (sinc function)
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which hags a Fourier transform equal to the box-car function.

However, for the side lobes to be eliminated altogether it is
necessary to extend these data windows to * ®. If they are truncated
at some finite value (as they must be in practice), side lobes are
again introduced, though they will be smaller than the case where
g(t) is the box-car function.

A simpler method is to taper the data set at the ends using

data windows indicated in the following sketches:

»
g(t)
T -i/h /% T/2 time
or
A
g(t)
1 i >
-T/2 -T/3 T/ 3 T/2 time

Although side lobes are still present in the frequency windows
for each of the sbove cases, they will be smaller than for the case
where the simple box-car data window was used. The smaller side lobes

are a result of replacing the abrupt discontinuities of the original

box-car date window with more gently sloping functions.
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Data tapering is most often performed when the FFT method is
uged to compute the power spectrum. For a more complete discussion

of this topic see Enochson and Otnes (1968).

2. Tapering the Autocorrelation Function

If the MLP method of computing the PSD is used the problem of
side lobe leakage is not as simple as it was in the case of computing
the PSD directly from its definition. An additional factor for con-
sideration enters when not only the original data set must be trun-
cated, but so also the autocorrelation function. When an MLP cal-
culation is made it becomes advisable, for reasons to be discussed
in connection with statistical reliability, to truncate the auto-
correlation function at a maximum lag of not more than 10—~20% of
the length of the data set (Blgckman and Tukey, 1958). 1In order to
see what effect this second truncation has, consider the original
data set f(t) properly truncated with a data window g(t). The auto-

correlation function Eil(T) then becomes
o (1) = [£(8) * g(t)] * [£(t) - glt)]
or

.

= (£ g) * (£ g)



16

Now wll represents the entire autocorrelation function avail;
able after f is truncated by g. To truncate @, at a lag of 10--20%
' of the length of the data set therefore involves gpecifying snother
function qf{1), called the lag window, by which ©,, ig mltiplied
in order to effect truncation. ILet wil represent the truncated
autocorrelation function. Then
cgq=[{erg)*(f-g))"a

[ _
o7 = P13

The apparent power spectrum is the Fourier transform of the

truncated autocorrelation function so that

P (w) = FI(£ - @) ¥ (£ )] al

F(f - g) * (£ - )] * Fa)

(% - g) - H£ - g)]* Fa)

[(F*g) - (F*G)I*Q (9).

where Q (the so-called spectral window) is the Fourler transform of

q, the lag window. Now g and g are normally chosen tc be even

functions, so that
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it

P (o) = (IF|Z * |g]?) * q

=[P (o) * la(w)|®1*q . (10)

true
We see that, as in seetion TIII-A, the true power spectrum has been
altered by convolution with |G(w)l2, and additionally by convoluti&n
with Q. If q(T) was the box-car function, then Q{w) is the familiar
sinc function, not squared. It is this last convolution that can
lead to negative velues in the apparent power spectrumleven though
negative values are theoretically impossible in a power spectrum.
They are, in this case, merely an artifact due to truncatiom.

To remcve the possibility of negative wvalues for the power
spectral estimates, as well as making the side lobes of the window
Q smeller, it is once again advisable to tailor the shape of
the lag window q(T). It is to be tailored in such a way that the
gide lobes that remsin are small in comparison to the main lobe, and
damp out quickly with increasing distance from the main lobe. Two

lag windows that have been found to do this effectively are:

1 T
(1) ql(T) = 5(1 +co8 —| , -T, s TsT

where Tm is the greatest lag used in the autocorrelation function.
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The use of this window is called "hanning". A second, more commonly

used lag window ig

(2) q2(T) = 0-5h‘+ 0.46 cos %ﬁi s -T <vs T .
m

Use of this window is called "hamming".
The two functions dq and dps along with their associated

transforms Q, and Q, are shown in Figure .,

o SPECTRAL WINDOWS LAG WINDOWS

0.8 .‘\ 0.8 /\
0.6 ll“- 0.4 r/ \‘ ]

7,
\k p/ \\
1.08Tm) \\ b % NS
0.4 \‘ ol A i e
) -2 -0B  -0.4 ) 0.4 0.8 .2
CHANGE (M 7/ T
0.2 VERTICAL SCALE 7% GF PEAK
. \\\ T T b - ey P—'-""—r"'““—1"-———-|'-""“'"“ 0.02

SRS S i ]
K:’{.///4\“~L—a“’f\“u7_a" :
' i I ki
. § H 3
! i
\\T/ i
| 004
o] 0.25 L.50 0.75 1.00 1.25 1.50 1.75 2.60 2.25 2.%0
£ T
Figure k

(After Blackman and Tukey, 1958.)
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Although in prineciple q(r) would normally be applied to the
autocorrelation function prior to transforming, the interchange-
ability of the integrations associated with the transform and the
convolution makes it possible to convolve with Q(y) after the
transform has been completed. This has particular advantages when
the data are in digital form. 1In the case of hamming or hanning,
the convolution will take the form of a 3-point smoothing formulsa
easily applied to the power spectrum estimates calculated by trans-
Torming the autocorrelation function, More will be said about this
form of smoothing in section V when a gpecific power spectrum example
is given.

It might be added that when the MLF method for computing PSD's
is used it is usually umnecessary to be overly concerned about the
effects of the convolution of |Q(m)12 with Ptrue(m) [see Eq. (10)].
Since G{w) is squared, whereas Q(,) is not, the side lobes of [G(t.,)|2
will be unimportant compared to those of Q(w). The half-width of the
major lobe of G(y) is also small (~ 1 order of magnitude smaller)
compared to that of Q(w) since the original data set is ~ 10 times
longer than q{+} Therefore the effects of Q will far outweigh those
of G, and it is those effects that hamming or hanning are designed
to offset. It is accordingly not necessary to taper the original data
set (or pre-whiten; see next section) except in cases of extremely
discontinuous spectra, or when extreme care need be taken to assure

the validity of the results.
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%, Pre-whitening

As was mehtioned previously, if there are large, well~defined
peaks in the power spectrum such peaks can produce spurious detail
in the power spectrum due to frequency or spectral window side lobe
leakage. It is for this reason that methods were sought to reduce
the side lobes. An alternate method that can be used on occasion is
known ag 'pre-whitening”. This procedure involves flattening the
power spectrum prior to calculation by passing the date through a
filter with a known power transfer function in order to eliminate
large peaks and discontinuities. With the peaks and gross discontin-
uities thus removed, the effective convolution of |Fi2 with |G]2 to
yield Pap(,.,) will not act to reproduce the side lobes of |G\8 as
would have been the case had the peaks not been removed, Once the
power spectrum is computed the inverse of the pre-whitening, the
so-called '"post-darkening'", is applied to the PSD estimates to
complete the calculation.

In order for pre-whitening to be used effectively some prior
knowledge of the expected shape of the spectrum to be flattened must
be available, This is necessary in order to design a filter with
the proper power transfer function. An example of how pre-whitening
may be used is the following: Suppose we have a data set for which
we know approximately the shape of the power spectrum, and suppose it

has a very large low (zero) frequency component, as in Figure 5.
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log P{w)

Figure 5

If the power spectrum is computed directly from the data with-
ocut some measures being taken to compensate for possible side lobe

leakage, the apparent power spectrum P&p(w) would look something like

Figure 6.
5“—
2-.—
log P&p(w)
l-
0

Figure 6
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The small scale structure may well be that solely due to side
lobe leakage, though in the case where confidence in the results is
low this structure cen be masked by statistical noise.

Suppose now that the original data f£(t) is pre-whitened by
convolution with a smoothing function s(t). Then the data set h(t)

available from which the PSD calculation_is made will be

hit) = £(t) * a(t)

or more simply,

Then
P (0) = %)% = |5 x o) |2
< |r-sl® |
or
P (0 = [F°] - [s]?
- (w) - [8]? (11)

true
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since s(t) is an even function.

Thus, if the original data set is convolved with a smoothing

function s(t), the true PSD is modified by the direct product of the
square of the transform of s(t). !S]2 is called the power transfer
function. To compensate for this at the end of the caleculation wewmul—

tiply by the inverse of ]S(w)l2 to restore the proper shape to P(w).

In the above example suppose we choose g smoothing function

1 n(t - to) | -
5 1 +.cos Ny 5 t - tol 24T
s(t) =
0 , It -t | =2a7
0

where Ar is some scale factor. This smoothing function may be passed
over the data as many times as one desires, more smoothing being
accomplished with each pass and more of the high frequency components
being suppressed.

If the data is in digital form the smoothing function above

takes the form such that if f'(t) is the smoothed data,

fi(t) =

-

£(8) g IE (0) 41 ()] . (12)

Holloway (1958) showed that for n successive passes of the above

elementary filter function through the data, the power transfer func-

tion |S|2 becomes
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ISI2 = cos 2n(ﬂf at)

where At is the data sample spacing.

The above filter function may be used to effectively remove
the low-frequency component in the present example. If the smoothed
data {low-pass filtered) is subtracted from the original unsmoothed
data, the difference will represent the original data filtered by a
high-pass filter with a power transfer function equal to the comple-
ment of the original transfer function. Suppose the original data
is filtered using this method. The smoothing function applied to the

original data set £(t) will have a power transfer function similar to

Figure 7.
1 s = = e e e e e e e e m e e -
0.5 4 low-pass filter
function
&f
Figure 7

When this smoothed data is subtracted from the original £(t),
the resultant power transfer function will be the complement of the

function shown above.
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high-pass filter function
(complement of low-pass
filter function of Fig. 7)

Figure 8

Applied to our example of data with a large low-frequency

component, this will effectively flatten the curve to minimize the

possibility of side lobe leakage. After the PSD has been computed

post-darkening is achieved by multiplying by the inverse of the func-

tion shown in Figure 8 to complete the caleculation.

For a more complete discussion of the topic of pre-whitening

and digital filtering techniques see Blackman and Tukey (1958) and

Enochson and Otnes (1968).
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IV. DIGITIZED DATA

The discussion of power spectra has been general up to this
point, with only an occasional reference to specifics. Since we are
here primarily interested in data that appears in discrete, digital
form, it is appropriate to specialize to that case. We shall from
this point forward consider only the power spectra of data consisting
of discrete, equi-spaced samples. The discrete forms of the general
equations of section II will be given for both the MLP and FFT cal-
culations. The statistical reliability of PSD estimates will be
discussed briefly for each of the two methods, and several considera-
tions helpful for planning will be mentioned, The averaging of

several power spectra ig also mentioned.

A. Discrete Forms of Relevent Eguations

1. MLP Method
The steps required for calculation of a power spectrum using
the MLP method may be summarized from the above discussion to be the

following:

(1) Pre-whitening. If the power spectrum is known to contain

large peaks or discontinuities, the raw data should be pPre-whitened
by use of appropriate digital filters (high-pass, low-pass, band-pass,

or combinations of these). The necessity for this procedure is
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gomewhat open to interpretation according to one's perception of
what constitutes a large peak or discontinuity. My own limited
experience over several years is that for a power spectrum with a
dynamic range of > 2—5 orders of magnitude, pre-whitening to
flatten the spectrum prior to its computation is advisable, The
exemple given in section IIT of & method of constructing a high-
pass filter was used successfully by the author (M.S. thesis, 1973).
Since, however, the actual method used to pre-whiten will depend

on the details of the various power spectra encountered in practice,
the reader is referred to chapter 3 of Enochson and Otnes (1968)
for a thorough discussion of recursive, non-recursive, and second-
and higher-order filters and their application to time series.

(2) Normalizing the Data. Althoush not mentioned in the

previous sections, it is advisable in practice to normalize the data
to zero mean and unit stendard deviation before calculation of the
PSD. Since the calculation of the mean-lagged-products {autocorrela-
tion function) involves the sum of many products, it is easy to termi-
~ nate a computer calculation of a PSD prematurely due to overflow.
Subtracting the mean from the data removes only the zero-frequency
cosine term from the PSD, and can be ineluded in the calculation gfter
the remaining following steps are completed. Dividing the {pre-
whitened) zero-mean data set by 0 reduces the data to unit standard
deviation. Correct absolute units can be restored to the final com-

puted PSD if desired by multiplying by o .
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(5) Calculation of the autocorrelation funetion. If mj

denotes the j'th value of the sutocorrelation function, the discrete
form for the autocorrelation function of the data set f(t) with data

sample spacing AT containing n discrete values fi is

P, = - £, .. i=0,1,2, ...m , (13)

where m is the maximim number of lsgs in the autocorrelation funetion.
As mentioned in section II, m will generally be limited to 10—20%
that of n.

(4) Fourier transform of the autocorrelation function. Since

the autocorrelation function is an even function, the discrete form
for the Fourier transform becomes the discrete finite cosine series.
Applying this to the sequence Wor Ppsowee, wy e obtain as raw

estimates for the PSD

m-1

s 0T .
Pi = AT [&b + 2 mj cDS[lJ ﬁ) + ", COS 1ﬂ] . (1)

1
i=0,1, ... m

where AT is the sample spacing.
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(5) Smoothing the raw estimates. The raw estimetes caleulated

in step (4) correspond to Eq. (10)

2
Pa.p((") = [Ptrue(w) * \G(w)l 1*q ,
with a box-car lag window leading to & sine function spectral window.
What remains is convolution with & suitably tailored spectral window

Q with smell side lobes to complete the calculation. A commonly

used window is the hamming window, the digital form of whiech becomes

Pi = 0.5k4 Pi + 0,23 (Pi+l + P, ) . (15)

i-1

(6) Post-darkening. If the raw data were pre-whitened in

step (1), the last step in the calculation of the PSD will be to
restore the true shape of the power spectrum by post-darkening. This
process involves multiplying the smoothed estimates of step (5) by
the inverse of the pre-whitening filter power transfer function.

The frequency resolution Af of the resultant spectrum will be

1
Af = 2m AT
where
m = the maximum number of lags in the autocorrelation function
and

At = data set sample period.
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The maximum frequency of the computed PSD will be
£ o= mhf = L (16)

in accordance with the sampling theorem.

2. FFT Method

The fast-Fourier-transform technique of computing the PSD of
a time series was a major improvement over the MLP method in terms of
the actual computer time taken for the calculation. If N is the num-
ber of points in & time series, the total computer time needed for
~an MLP calculation is roughly proportional to NE, where for the FFT
method it goes approximately as N{log N). The advantages of utilizing
the FFT method whenever many points are being power spectrum analyzed
therefore lie on the side of efficiency rather than any fundemental
superiority of the method over that of the MLP. As a technique of
computing PSD's, it is quickly supplenting the MLP method and is
therefore worth studying. An extensive discussion of the FFT com- .
puted one-dimensional PSD by Brault and White (1971) provides a
thorough introduction to FFT methods and their application to astroa-
nomicgl problems.

Although no attempt will be made here to outline in detail the
steps required for FFT caleulation of a PSD, the basic steps are as

follows:
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(1) Pre-whitening. The necessity for pre-whitening the data

is less strong when the FFT method iz used than it 1s for the MLP
method. The reason for this lies in the fact that the FFT calculated

PSD takes the form

2
P&p(w) = Ptrue * |6(w)] ’

whereas the MLP method yielded

) |2

P(w) = [P ] * a(w)

true * ,G(w

The FFT form does not involve a convolution with Q, so that
one need only be concerned with the shape of G(w). If g(t) is
properly specified the side lobes of |G(m)|2 can be kept small enough
80 that very little leakage is present [see step (3) below]. oOnly
in the case where there are exceptionally large peaks or discontin-
uities in the power spectrum should bre-whitening be necessary. 1In
general, it may be said that in most cases this step will not be
hecessary at all.

(2) Normalizing the data. It is advisable to normalize the

data to zero-mean and unit standard deviation, for the same reassons
as given for the MLP method above.

(3) Data window correction. As discussed in section ITI-a,

truncation of a data set can Preoduce spurious detail in the computed

PSD. It is therefore necessary to choose g data window g(t) by which
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to miltiply the time series such that the frequencywindow G{w) will
have small side lobes. A window currently in common use is the ten-
percent cosine bell, the application of which is called coswinding.
For the generalized formula for this data window see Brault and White
(1971, Equation 13).

(1) Appending zeros to the data. The most efficient versions

of the FFT require the data to consist of a number of points equal
to a power of two, although some genemlized versions will work with
an arbitrary number of points. If a version is used requiring some
gpecific number of points, the original normalized data set to be
transformed must have zeros appended to it to bring the total points
up to the specified number.

(5) Transforming the data. The normalized data set f, is

transformed using the forward dizcrete Fourier series transform to

yield Fourier coefficients

0
a, + b =né- ; £, expl[ak—”_—l}, §=0,1, ..., n, -
(17)
where
At = data sample spaping,
n, = number of data points in the normalized dats set, and
i =/-1

(6) Computing the raw spectrum. The raw PSD is just the ab-

solute value squared of the Fourier transform, adjusted to compensate
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for the appendage of zeros to the original data set.
2
no 2 2 : (18)

where n = number of points in the original. data set.

(7) Smoothing the raw estimates. The raw estimates obtained

in step (6), although theoretically correct, may be statistically
unreliable. It is possible to increase the statistical reliabilify by
smoothing (convolving) the estimates with a switable smoothing func-
tion. For an excellent discussion on the subject of smoothing raw FFT
estimates see Edmonds and Webb (1972).

The frequency resolution (PSD estimste spacing) of the FFT

calculated PSD will be

1
o = e (19)
9]

For specifics on the programming of the FFT algorithm, including
Fortran indexing peculiarities, one should consult 'Special Issue
on FFT and Its Applications to Digital Filtering and Spectral Analysis',
IEEE Trans. AU-15, No. 2 (1967). Another special issue on the same

topic, IEEE Trans. AU-17, No. 2 (1969), gives an extensive biblio-

graphy.
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B, _The Statistical Reliability of the PSD Estimates

\

1. Confidence Limit§

The calculation of the PSD from a fln%te number of discrete
date points can be expe¢ted to have assoc1ate§ with it a set of confi-
dence limits reflecting the presumed statlst1cal nature of the ori-

j
ginal time series, In theory,llif a PSD caleulatiion could be made from

8n infinite number off data points, one would have, absolute confidence

. /
in the results, In practice one must settle for & finite number of

po:_nts from which to make the cv]alculation Each point in the resul-

t%nt bower spectrum will have a set of "confidence limits" assigned

to it reflecting the confidence Qin'a statistical sense)'\that the re-

sulting bower/ spectrum is not due‘solely to randomly distributed
Lo \
data points./ - - '
L
The statistical accuracy of the computed PSD ig estlmated in

i

terms of “equivalent degrees of freedam" from which the conf:ldence
limits a?e calculated.  The degrees of freedom may be thought of as

' represen{lng the number of estimates of power in the frequency inter-
/
val Af, the frequency resolution of thie computed PSD. A meafure of

thE/ﬁrobability that an estimate falls within an upper and}lower

bohund, the ratio of which is designatel the confidence factor £, is

given by f \
." | \
/ i

1

ob/ (LV/E=T) _ em( 2:3b
1ok -1

f (20)
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where

fc = confidence factor for a given confidence,

k = degrees of freedom, and

b = factor depending on the desired confidence, given as

follows:
conf'idence
506 80% 9% 96%h  9B%
b I 8 16 20 25 29 .

This is an approximation, but for ¥ 2 L4 is very close to more exact
calculations based upon chi-square tables (Edmonds, 1966).

The confidence factor fc may be used ag error bars for the
computed PSD, being positioned on each data point in such a way
that the point falls on the geometric mean of the upper and lower
limits of fc. Another way of stating this is that the upper limit
for the confidence limits is equal to the PSD estimate times the
square root of fc; the lower limit equals the estimate divided by the
square root of £ . If the PSD is plotted on a semi-log scale the
confidence limits will be centered on each point.

A plot of fc as a function of degrees of freedom k for several
different confidences is shown in Figure 9. The ordinate expresses
fé in Db; to determine fc one goes acrogs to the straight line labeled

"factor', then reads fc off the abgcissa., As an example, for k = 30
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the 90% confidence factor expressed in Db is seen to be ~ 3.8, for
which fc 2.3,
The next two sections will consider formulas for determining

k for each of the two methods of computing PSDsg.

2. k for the MLP Calculation
The number of degrees of freedom k for the one-dimensional MLP

calculated PSD is given by (Blackman and Tukey, 1958)

where

=
1]

the number of data points in the data set, and

M = the maximum number of lags in the autocorrelation function

the number of points in the computed PSD.

As can be seen from this formula, k is nearly proportional to
the ratio N/M. In order to achieve maximum confidence in the PSD
estimgtes it is necessary that k be made as large as possible; this
will insure that the confidence factor fc [Eq. (20)] will be small.

N is usually some fixed number of points, so M is therefore chosen to
be small relative to N. It is for this reason that M is normally

chosen to be not more than 10—20% of N.
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3. k for the FFT Calculation
The number of degrees of freedom k for the one-dimensional

FFT calculated PSD is given by (Tukey, 1967)

. r - NT
= 2p No
where

N = the number of points in the original data set,

N, = the number of points tapered by the data window g(t),

Nb = the total number of data points after zeros have been
appended, and

P = the effective number of points involved in smoothing of

the raw PSD estimates.
Although the MLP and FFT formulas for k appear to be super-
ficially different, it is not difficult 4o show that the confidence
limits calculated from a given k are essentially equivalent for the

two cases, as would be expected.

C. Planning Considerations

In the previous sections the basis of a PSD calculstion was
discussed with appropriate equations given. In a practical applica-
tion some thought must be given to the problem of choosing data sample
spacing, frequency resolution, and the frequency range over which the

power spectrum is to be calculated. This section will deal only with



congiderations to be made in performing an MLP calculation; similar

considerations will apply to an FFT calculation.

1. Chooglng AT and fmax
The rew data from which the PSD is to be caleculated is assumed
to consist of discrete, equi-spaced samples of period AT. Then if
fmax denotes the maximum frequency for which P5D estimates are ob-
tained we have from the sampling theorem
1
ot

fnax = 33 '

fmax 1s clearly independent of the total number of data points and
the maximum lag M of the autocorrelation funcetion. It depends solely
on the sample spacing. If in an analysis one wishes to examine the
PSD up through a specific freguency, this formula shows what the
corresponding minimum sampling frequency must be. Likewise, if it is
desired only to compute the PSD for a limited frequency range, by
choosing the correct AT the resulting PSD will have a frequency range
of exactly the right size., This fact is helpful in minimizing the
number of data points reguired in a calculation., TFor example, if one
were interested in examining the PSD of a set of data only in the fre-
guency range O0—5 Hz, the sampling period AT would be O.1 sec. Samp-
ling more often than this would increase fmax beyond the range of
interest, increase the total number of data points, and thus the

machine calculation time, and generally would not add any informatiom.
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If the sampled data already exists for which the power spectrum
is to be calculated, it is possible to adjust AT to near the desired
vaelue by (a) decimation, using only every p'th point of the original
data or (b) averaging, averaging by groups of p points. The former
method increases At by a factor of p and maintains the standerd devia-
tion (for random or near-random data) about the mean. The latter
increases AT by a factor of p but decreases the standard deviation
about the mean by a factor of /p. For further discussion on these

methods consult Enochson and Otnes (1968).

2, Choosing M and Af

The frequency resolution Af of the calculated PSD is

AP = é%
where M is the maximum leg in the autocorrelation function. This
formula may be used for either determining in advance of a caleculation
what the frequency resolution will be, or for determining M for a
given desired Af, As discussed in section B, M should Ye small
relative to the total amount of data, This fact must also be taken
into account when plamming a PSD calculation.

As an example of how the foregoing considerations may be used,

suppose we Wish to calculate the PSD of a data set for the frequency
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range 0—5 Hz. Suppose further that we wish the freguency resolution
Af to be 0.2 Hz, providing a total of 26 points (including the end-
points) in the power spectrum, and that the 90% confidence factor is

to be < 2.0. Then

. 1
AT—W—O.lsec 3

1

M =m=2.5 sec

the maximum lag of 26 data points.

From Figure ¢ we find that for the desired confidence we must

have k # 45, from which

for which

N = 610 data points.

As a second example suppose a data set already exists consist-
ing of 500 points with sample spacing 1 sec. If the autocorrelation
function is truncated at 10% the length of the data set, we calculate

£ o’ AFs k, and fc (90%) to be:



L1

m—-wll—,fo.s}{z ,
Af=-§4—=25]6:0.01Hz ,
k:E[g-%J=2(%O—O-%J=l9.5 , and
£, (908) - 2.9

From the above simple examples it is seen that M, N, AT, fc’
Af, and fmax are to a degree interrelated. Therefore one must be some-
what judicious in their specification in order to achieve the maximum
amount of useble information in a PSD calculation. For example, one
can achieve a very high degree of statistical reliability by msking.
M very small. However this would be at the expense of the frequency
resolution. In general, for a given data set there is a trade-off
between statistical reliability and frequency resolution. This proﬁ-
lem can be surmounted by simply increasing N (using more data) but

then the computing time increases, and so on.

D. Averaging Power Spectra

It is occasionally desired to study the average characteristies
of power spectra over long periods of time. Although it is possible

to compute an average power spectrum over a long data get, it is
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sometimes more efficient to break it up into shorter sets, compute the
PSD for each individual data set, then average the results. This pro-
cedure is also necessary if, for example, several short, non-contiguous
date sets of varying lengths exist for which one wishes to extract an
average power spectrum. The validity of the averaged results will
depend on the stationarity of the data; for data which is non-
stationary the results will be influenced by the lengths and number of
data sets used in the caleulation. [For a short discussion on this
point see Sentman (1973).] The following sections apply to MLP cal-
culated PSD's, though similar considerations would apply to FFT cal-

culated PSD's.

1. Averaged Power Spectra from Data Sets of Equal Lengths
If it is agsgsumed that the frequency resolution Af is identical
for each PSD comprising the average, the statistical reliability of

each is the same. Then

ij

ol
[H
=

C
i
i]=
oo
g

where
TE = 1'th point in the averaged power spectrum,
P.j = i'th point in the J'th power spectrum,
N = the number of spectra being averaged, and
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Uj = gtandard deviation about the mean of data in the original
j'th (pre-whitened) data set. If the data in the j'th
data set were divided by Oj after the mean was removed
prior to calculation of the power spectrum, this weight
i8 necessary to restore the proper relative units to

Pij' If the data were not normalized this weight is

equal to one.

0. Averaged Power Spectra from Data Sets of Different Tengths
If the individual spectra comprising the average are computed
from data sets of different lengthe, the statistical reliability of
each PSD ig different. If Af is identical for each individual PSD,

the expression for averaging becomes

N
= 1 - 23071 o
P, =% Z% 0? exp {———————“"] Pij

3= eoka -1
where
kj = degrees of freedom in the j'th computed power spectrum,
and
b = 8, for 50% confidence limits.

The exponential weighting factor must be included to properly
weigh individual spectra according to its probable error. The uncer-
tainty in the spectra is tsken to be the probable error, or the

square root of the 50% confidence factor defined in Eg. (20).
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3. Btatistical Reliability of Averaged Spectra
Confidence 1limits for the averaged spectrum are computed by
assuming that its equivmlent degrees of freedom k equal the sum of

the degrees of freedom in the individusl spectra comprising the aver-

age.

It can easily be shown that if the statistical "noise" present in each
of the individual spectrs is treated as a random fluctuation sbout

the true power spectrum, the sbove expression for calculating K results
in confidence limits that shrink gt exactly the same rate as the

"noise" when more and more spectra are averaged.
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V. AN EXAMPLE OF A POWER SPECTRUM CALCULATION

As an example of how the information contained in the previous
sections may be applied, the following will szerve to illustrate the
basic features of an MLP calculzted power spectrum. The example
given is from a caleculation made in conjunction with the study of
oscillatory phenomena in the solar atmosphere (Sentman, 1973).

The raw data consisted of antenna temperature 5 sec data
samples of solar microwave emission recorded on the North Liberty
Radio Observatory 2-cm radiometer. Individual data sets ranged in
length from 4—12 h. The power spectrum of each data set was to be
calculiasted, and the average of all the individual spectra computed
to obtaln an average power spectrum for all the data sets.

. The frequency range of interest to this study was 0—15 mHz

(1 mHz = 10‘3

Hz), or f oy = 15 mHz. A sampling time 47 of

1/2{(15 x 10‘3) = 33.2 sec was thus indicated. The nearest that one
could come to this figure using 5 sec data samples was either 30 sec
or 25 sec, corresponding to averaging the 5 sec samples by groups of
6 or 7, respectively. Averaging by groups of 6 was chosen, yielding
an effective sampling time AT = 30 sec and a maximum frequency

S 16.7 mHz. A typical data set with 30 sec resolution (effective

sampling time) is shown in Figure 10.
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It was known in advance of the calculation (by trial runs on
seversl data sets) that the power spectra all contained a very large
peak at near zero frequencies, thus indiecating a need for
pre-whitening. High-pass smoothing was achieved by means of the
method described in section ITI-B by making 10 passes through the
data with the smoothing function desecribed by Eg. (12). The result-
ing low- and high-pass power transfer functions are shown in Figure
11. A maximum lag of 25 min (= 50 lags X 30 sec) was chosen to
balance frequency resolution against statistical reliability. This
resulted in a frequency resolution Af = 0.353 mHz. The degrees of
freedom k therefore ranged from 18.5 (4 h data set) to 56.9 (12 h
data set), providing the high degree of statistical relisbility
necessary for the study (very low amplitude fluctuations were being
gought ).

The data normalization and power spectra calculations were
achieved using the subroutine listed in Appendix.I. After the power
spectrum was calculated it was post-darkened to compensate for the
pre-whitening by mitiplying with the inverse of the high-pass power
transfer function shown in Figure 11. An example of the resulting
spectra with confidence limits, normalized to a value of 10 in the
range of 4—5 mHz for display purposes, is shown in Figure 12 for
the frequency range 0—15 mHz. All celculations were carried out on

a Univac 418 computer.
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FIGURE CAPTICHS

The confidence factor as a function of degrees of freedom
k (see page 35).

Typlcal plot of antenna temperature versus time with 30
sec time resolution. Data records used to compute power
spectra were chosen to exclude the end pieces of each data
day.

Low-pass and high-pass filter functions R(f) and R'(f)
used to pre-whiten the data prior to calculation of the
power spectra. Post-darkening is achieved by multiplying
the resultant spectra by 1/R’(f).

Power spectrum of the single record containing s statis-

tically significant peak nesr 4 mHz.



Db.

A-GT73-228

FACTOR

] l]llllll i I !ll!ll|

v T

1o {00
K-DEGREES OF FREEDOM

Figure §

gh



‘K

ANTENNA TEMPERATURE,

1oy

10?

102

UNIVERSITY OF 10WA 2-CM RADIOMETER

] ] ) :
! ; \ X
12 " 13 I 15 16 17 s 18 20 21 22 23 24
DEC. DAY 3uy g DEC 68 uT

Figure 10~

o



A-G73-224

H! PASS

LOW PASS

FILTER FUNCTION

FILTER FUNCTION

I

l

FREQUENCY, mHz

Figure 11

0%



NORMALIZED POWER SPECTRAL DENSITY

1000

100

o1

A-G73-227

RN RRE

o TN

l illlll|

T

) | | b l | l | I I t ! | |

DEC. DAY 136, 1969

80 PERCENT
CONFIDENCE LIMITS
K= 36.0

L L 1RLie

| llll-ll]

1

| 1llllll

) 1O
FREQUENCY, MILLI-Hz

Figure 12



52

AFPENDTX 1

A FORTRAN SUBRCQUTINE FOR CALCULATING POWER SPECTRA

The following is an example of a subroutine for an MLP calcu-
lation of a power spectrum. Pre-whitening is assumed to have been
completed prior to entry into the subroutine, and post-darkening and
convergion to absolute units from normalized units is assumed to
take place after return.

The program was written from the definitions for the auto-
correlation function and discrete cosine transform. However, to
facilitate the transform operation a cosine table is constructed ana
a table look-up procedure is incorporated into the program rather
than requiring a double precision cosine to be computed each time
it is needed. The table is constructed in the first call of the
subroutine and each time the autocorrelation function maximum lag is
changed; succeeding calls use the table already constructed.

As shown below, the program will accommodate & maximum of 1500
date points with an autocorrelation function maximum lag of 500.
These figures may be raeised or lowered as desired by dimensioning the

relevant arrays accordingly.



A. Subroutine Arguments

Input variables:

X

N

MA

Double precision array containing data to be power
spectrum analyzed

Integer specifying the mumber of data points in X (may
be smaller than the dimension size of X)

Integer specifying the maximim number of lags for the
autocorrelation function (may be smaller than the dimen-

sion size of R)

Output variables:

U

XBAR

SX

Single precision array containing M + 1 hamming smoothed
normalized power spectral estimates

Double precizion array containing M + 1 values of the
normalized autocorrelastion coefficients

Double precision variable for the mean of the input

data set

Double precisgion variable for the standard deviation

of the input data set. This variable is nécessary ir

absolute units are to be calculated for the power spec-

trum (not done here)
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B. Subroutine

SUBROUTINE SPECTR(X,N,MA,U,R,XBAR,SX)

DOUBLE PRECISION X,AL,CS,XBAR,SX,R

DOUBLE FRECISION FAC,ARG,DCOS,DBLE,DSQRT,PI,AEND
DIMENSION X(1500),U(501),R(501},CS(501),AL(501)
DATA PT/.3141592654D+01/ ,M/0/

NORMAT,IZE DATA TO ZERO MEAN AND UNIT STANDARD DEVIATION

XBAR=0.0
DO 3 I=1,N

3 YXBAR=XBAR+X(I)
XBAR=XRAR/DBLE (FLOAT(N) )
8X=0, OD+00
DO 6 Is1,N
X(I)=X(1)-XPAR

6 SX=8SX+X(I)*X(T1)
SX=DSQRT (SX/DBLE (FLOAT(N)))
DO 7 I=1,N

7 X{I)=X(1)/sX

BUILD COSINE TABLE .CS. FOR INTERVAL .0. to .PI.
IF{MA.EQ.M) GO TO 200
M=MA
MP=M+1
AVERG=DBLE (FLOAT (M) )
DO 2 I=1,MP
ARG=DBLE (FLOAT (I-1))
ARG={PI*ARG ) /AVERG
2 C8(I)=DCOS(ARG)
200 CONTINUE

CAI,CUTATE AUTOCORRELATION COEFFICIENTS
DO 30 J=1,MP
R(J)=0.CD+00
Jp=J-1
TEND=N-JP
AEND=DBLE (FL.OAT (1IEND) )
DO 25 I=1,IEND
INDX=I+JP
25 R({J)=R{J)J+X(I)*X(INDX)
30 R(J)=R(J)/AEND



Qaa

55

Lo

50

22

CALCULATE POWER SPECTRUM
(FOURIER TRANSFORM A/C FUNCTION .R.}

MX2=M*2

MPX2=MX242

MM=M-1

DO 4o J=1,MP

AL(J)=0.0D+00

JP=J-1

DO 35 K=1,MM

CALCULATE INDEX ,INDCS. FOR RETRIEVING
PROPER COSINE FROM TABLE
INDCS=MOD ( (TP¥K ) ,MX2)+1
IF (INDCS.GT.MP) INDCS=MPX2-INDCS
AL{J)=AL(J)+2,0D+00%R (K+1 )*CS (INDCS )
FAC=1,0D+00
TF (MOD(JP,2).EQ.1) FAC=~1.0D+00
AL(T)=AL{J)+R (1 )+R (MP }*FAC

APPLY HAMMING SMOOTHING FUNCTION TO ESTIMATES .AL.
TO YIELD SMOOTHED POWER SPECTRUM ESTIMATES .U,
U(1)=SNcL (0. 54D+00%AL (1 )+0. 46D+00*AL(2) }
U (MP )=SNGL (0. 54D+ 00%AL (MP )+0. LED+O0O*AL (M} )
DO 50 I=2,M
U{I)=SNGL(0.54D+00%AL (T }+0.23D+00% (AL (I-1)+AL(I+1)))
RETURN
END
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